Metazoan stress granule assembly is mediated by P-eIF2alpha-dependent and -independent mechanisms.
نویسندگان
چکیده
Stress granules (SGs) are cytoplasmic bodies wherein translationally silenced mRNAs are recruited for triage in response to environmental stress. We report that Drosophila cells form SGs in response to arsenite and heat shock. Drosophila SGs, like mammalian SGs, are distinct from but adjacent to processing bodies (PBs, sites of mRNA silencing and decay), require polysome disassembly, and are in dynamic equilibrium with polysomes. We further examine the role of the two Drosophila eIF2alpha kinases, PEK and GCN2, in regulating SG formation in response to heat and arsenite stress. While arsenite-induced SGs are dependent upon eIF2alpha phosphorylation, primarily via PEK, heat-induced SGs are phospho-eIF2alpha-independent. In contrast, heat-induced SGs require eIF2alpha phosphorylation in mammalian cells, as non-phosphorylatable eIF2alpha Ser51Ala mutant murine embryonic fibroblasts do not form SGs even after severe heat shock. These results suggest that mammals evolved alternative mechanisms for dealing with thermal stress.
منابع مشابه
Uncoupling stress granule assembly and translation initiation inhibition.
Cytoplasmic stress granules (SGs) are specialized regulatory sites of mRNA translation that form under different stress conditions known to inhibit translation initiation. The formation of SG occurs via two pathways; the eukaryotic initiation factor (eIF) 2alpha phosphorylation-dependent pathway mediated by stress and the eIF2alpha phosphorylation-independent pathway mediated by inactivation of...
متن کاملImportance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation.
Alphavirus infection results in the shutoff of host protein synthesis in favor of viral translation. Here, we show that during Semliki Forest virus (SFV) infection, the translation inhibition is largely due to the activation of the cellular stress response via phosphorylation of eukaryotic translation initiation factor 2alpha subunit (eIF2alpha). Infection of mouse embryo fibroblasts (MEFs) exp...
متن کاملP bodies promote stress granule assembly in Saccharomyces cerevisiae
Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose de...
متن کاملStress granule assembly is mediated by prion-like aggregation of TIA-1.
TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontan...
متن کاملRobust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae.
Environmental stresses inducing translation arrest are accompanied by the deposition of translational components into stress granules (SGs) serving as mRNA triage sites. It has recently been reported that, in Saccharomyces cerevisiae, formation of SGs occurs as a result of a prolonged glucose starvation. However, these SGs did not contain eIF3, one of hallmarks of mammalian SGs. We have analyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2009